Leave a Message
We will call you back soon!
Your message must be between 20-3,000 characters!
Please check your E-mail!
More information facilitates better communication.
Submitted successfully!
We will call you back soon!
Leave a Message
We will call you back soon!
Your message must be between 20-3,000 characters!
Please check your E-mail!
Place of Origin: | China |
---|---|
Brand Name: | MICH |
Certification: | ISO9001 |
Model Number: | WIPAHEHT |
Minimum Order Quantity: | 1 meter |
Price: | USD0.5-USD5 per meter |
Packaging Details: | plywood crates |
Delivery Time: | in one month |
Supply Ability: | 10 million meters per year |
Application: | Waste Incineration Power Plant | Use: | Ash Hopper |
---|---|---|---|
Insulation: | High Purity Magnesium Oxide | Property: | Mineral Insulated |
Min. Bend Radius: | 6 X Cable Diameter | Max. Maintenance Temp. (°F): | 900 |
Max. Exposure Temp. (°F) Power Off: | 1100 | Applications: | Facility Unit And Pipelines |
High Light: | CU Sheath Electric Heat Tracing,Ash Hopper Electric Heat Tracing,600V Electric Heat Tracing |
Waste Incineration Plant Ash Hopper Electric Heat Tracing
Waste Incineration Plant Ash Hopper Electric Heat Tracing is a special heat trace solution based on MI heating cable for the ash hopper in waste incineration power plant to prevent ash condensing. The flying ash cooling in ash hopper in waste incineration power plant may cause ash solidification, compression or agglomeration and lead to the clogging of ash hopper.
Garbage incineration power plant is an environment-friendly garbage disposal method with its main principle putting life rubbish in the garbage incinerator combustion and using the generated steam to produce electricity, at the same time, adopting strict flue gas treatment method to make the waste harmless. Its role is to dispose the rubbish with the power generation as a by-product.
The process of waste incineration generates fly ash. The fly ash comes out from the lower part of the reactor passing through the dust hopper of the dust remover, from the lower part of the ash hopper, through the screw conveyor and chain conveyor to the bucket elevator, and the fly ash is lifted to the upper part of the ash hopper and stored there. There is an ash discharge system at the lower part of the ash hopper.
Because fly ash will condense at about 120-130 degrees, if a large amount of fly ash is condensed on the surface of the equipment, it will hinder the normal work. Therefore, heat trace is required for these operating equipment units and the corresponding pipes and valves, as well as the lower part of the ash hopper, to ensure the normal work of the equipment.
Cable Structure
Specification
Heating cable instruction code
MI CU-B 16K320/60/2520/220/E1
No. 1 2 3 4 5 6 7
No. | Instruction | |
1 | Sheath material | CU |
2 | structure of cable components | shown in table 1 |
3 | cable codes | shown in table 2, 3 and 4 |
4 | length of heating cable | In meter |
5 | Heating cable power | In Watt |
6 | heating cable voltage | In Volt |
7 | heating cable voltage | See table 5 |
Cable Code
1 6 K 320
No. 1 2 3 4
Serial NO. | Instruction | |
1 | core number | 1 or 2 |
2 | Voltage grade | 3=300V, 6=600V |
3 | conductor materials | C,K |
4 | cold resistance ×1000 | 320=0.32Ω/m×1000 |
Table 1 Structure of Cable Element
Note: Model C, F and G are suitable for being used at temperature under 65℃
Table 2 Heating Cable Specification (600V Single Conductor)
Cable Code | Diameter | HDPE Diameter | Standard resistance value at +20℃ | Maximum Production Length | Unit weight |
mm | mm | Ω/m | m | kg/km | |
16C1.7 | 8.2 | 10 | 0.0017 | 350 | 366.54 |
16C2.2 | 7.6 | 9.4 | 0.0022 | 380 | 307.77 |
16C2.9 | 7.0 | 8.8 | 0.0029 | 400 | 264.45 |
16C4 | 5.9 | 7.7 | 0.004 | 600 | 190.88 |
16C7 | 5.3 | 7.1 | 0.007 | 600 | 154.08 |
16C11 | 4.9 | 6.7 | 0.011 | 600 | 132.25 |
16C13 | 4.6 | 6.4 | 0.013 | 600 (300)☆ | 125.7 |
16C17 | 4.6 | 6.4 | 0.017 | 600 (300)☆ | 117.16 |
16C21 | 4.6 | 6.4 | 0.021 | 600 (300)☆ | 111.9 |
16C25 | 3.7 | 5.5 | 0.025 | 600 (480)☆ | 68.83 |
16C33 | 3.7 | 5.5 | 0.033 | 600 (480)☆ | 63.76 |
16C40 | 3.4 | 5.2 | 0.04 | 600 (560)☆ | 58.87 |
16C63 | 3.2 | 5 | 0.063 | 600 | 51.47 |
16K80 | 6.8 | 8.6 | 0.08 | 370 (140)☆ | 254.18 |
16K100 | 5.2 | 7 | 0.1 | 450 (240)☆ | 162.11 |
16K140 | 4.9 | 6.7 | 0.14 | 600 (270)☆ | 122.55 |
16K197 | 4.45 | 6.25 | 0.197 | 600 (330)☆ | 111.32 |
16K220 | 4.5 | 6.3 | 0.22 | 600 (330)☆ | 102.89 |
16K315 | 4.3 | 6.1 | 0.315 | 600 (350)☆ | 91.44 |
16K345 | 4.2 | 6.0 | 0.345 | 600 (370)☆ | 85.9 |
16K450 | 4.0 | 5.8 | 0.45 | 600 (400)☆ | 80.73 |
16K630 | 4.0 | 5.8 | 0.63 | 600 (400)☆ | 77.26 |
16K800 | 3.5 | 5.3 | 0.8 | 600 (530)☆ | 61.48 |
16K1250 | 2.8 | 4.6 | 1.25 | 600 | 40.83 |
16K2000 | 2.8 | 4.6 | 2.0 | 600 | 38.96 |
Table 3 Heating Cable Specification (600V Double Conductors)
Cable Code | Diameter | Nominal resistance at +20℃ | Maximum manufacturing length | Unit weight |
mm | Ω/m | m | kg/km | |
26C3.4 | 12.9 | 0.0034 | 150 | 783.76 |
26C4.4 | 12.2 | 0.0044 | 160 | 701.56 |
26C5.8 | 11.3 | 0.0058 | 170 | 606.16 |
26C8.6 | 9.90 | 0.0086 | 180 | 451.43 |
26C11.4 | 9.30 | 0.0114 | 200 | 400.05 |
26C13.8 | 9.00 | 0.0138 | 210 | 375.20 |
26C17.2 | 8.60 | 0.0172 | 220 | 344.90 |
26C23 | 8.00 | 0.023 | 250 | 303.25 |
26C34.4 | 7.50 | 0.0344 | 280 | 269.20 |
26C49.2 | 7.10 | 0.0492 | 300 | 243.84 |
26K240 | 9.90 | 0.24 | 180 | 451.43 |
26K320 | 9.30 | 0.32 | 200 | 400.05 |
26K384 | 9.00 | 0.384 | 210 | 375.20 |
26K480 | 8.60 | 0.48 | 220 | 344.90 |
26K640 | 8.00 | 0.64 | 250 | 303.25 |
26K960 | 7.50 | 0.96 | 280 | 269.20 |
Table 4 Heating Cable Specification (300V Double Cores)
Cable Code | Diameter | Nominal resistance at +20℃ | Maximum manufacturing length | Unit weight |
mm | Ω/m | m | kg/km | |
23C3.4 | 12.0 | 0.0034 | 200 | 708.10 |
23C4.4 | 11.3 | 0.0044 | 220 | 629.07 |
23C5.8 | 10.4 | 0.0058 | 240 | 537.73 |
23C8.6 | 9.00 | 0.0086 | 260 | 392.56 |
23C11.4 | 8.40 | 0.0114 | 280 | 343.89 |
23C13.8 | 8.00 | 0.0138 | 300 | 314.57 |
23C17.2 | 7.60 | 0.0172 | 320 | 286.27 |
23C23 | 7.10 | 0.023 | 340 | 252.98 |
23C34.4 | 6.60 | 0.0344 | 360 | 221.19 |
23C49.2 | 6.20 | 0.0492 | 380 | 197.64 |
23K160 | 10.4 | 0.16 | 220 | 508.37 |
23K240 | 9.00 | 0.24 | 240 | 392.56 |
23K320 | 8.40 | 0.32 | 265 | 343.89 |
23K384 | 8.00 | 0.384 | 280 | 314.57 |
23K480 | 7.70 | 0.48 | 300 | 291.91 |
23K640 | 7.10 | 0.64 | 320 | 252.98 |
23K960 | 6.50 | 0.96 | 350 | 216.11 |
Note: the resistance value of 2-core cable in the above table is the measured value after the ends are twisted (i.e., single-core resistance X2);
For the use of 660V voltage occasions, please contact our company professionals;
Mark of (300)☆ is a recommended production length by MICH
Table 5 terminal specifications
Model: A, D, E | Model: B | |||||
Maximum Voltage(V) | Maximum Current (A) | Terminal Specification | Maximum Voltage(V) | Maximum Current (A) | Terminal Specification | Maximum Voltage(V) |
600 | 15 | E2 | 20 | E1 | 15 | E1 |
600 | 20 | E2 | 25 | E2 | 20 | E1 |
600 | 30 | E3 | 40 | E2 | 30 | E2 |
600 | 50 | E3 | 70 | E2 | 50 | E2 |
600 | 70 | E3 | 100 | E3 | 70 | E2 |
Note 2: the length of cold end cable with standard configuration is 2 meters. If you increase or decrease of length required, please contact our professional personnel.
Corresponding reference table between the output power and sheath temperature
Note: when applying a copper conductor heating cable, please pay attention to the conversion of its heated hot resistance and unheated cold resistance.